CHAPTER 4

Application Development

OVERVIEW

Use this chapter for designing and creating programs in the Atari System V
environment. Some of the information you'll find here includes

o Brief descriptions of software development tools and libraries.

¢ Guidelines for creating window-based applications, and internationalized
applications in particular.

e A summary of how to package an application.

e An overview of how to write a device driver program and the steps used to
include it in the system.

* A section on rewriting existing TOS-GEM programs for the Atari System V
windowing environment.

APPLICATION DEVELOPMENT LIBRARIES

User applications are developed on the Atari System V by writing programs in C
programming language that use the functions and routines that are provided in
several software libraries. Each library can be thought of as a layer.

NEW APPLICATIONS
|
AtariLib
|

XFaceMaker 2
|

OSF/Motif
|
Xtoolkit
|

Xlib

Each layer is built upon the layers below it; that is, AtariLib makes direct calls to

OSF/Motif routines, Xtoolkit routines, and Xlib routines, as well as

XFaceMaker 2 routines.

Each layer, from the bottom up, contributes to the construction of a new

application in the following ways:

o Xlib is library of basic windowing routines, such as mouse event, move
window, size window.

o Xtoolkit is a library of windowing-associated widgets, including a scroll bar,
a pop-up menu, and a toggle button.

4-1

Chapter 4

* OSF/Motif is a library of windowing and widget routines that define the
OSF/Motif style.

* XFacemaker 2 is an interactive application that creates the graphical interface
of a new windowing application. It is also a library of interface routines.

¢ AtariLib is a library of graphical user interface routines, such as
internationalization, alert boxes, and context-sensitive help.

Libraries in the Atari System V distribution include those shown in Table 4-1.

Table 4-1

Atari System V Nior Descrldtion Bk

Libraries Atari Atari library Atari
Fm XFaceMaker2 NSL
Xm Motif OSF
Xt X Toolkit MIT
X11 X Library MIT
socket Socket library va
nsl Socket hostname library V4
malloc Network services library V4
gen General purpose routiens V4
m Math library V4

To link these libraries into your own program, enter the following lines near the
top of your makefile.
LIBS=-1Atari -1Fm -1Xm -1Xt ~-1X11 -lsocket \
-lsockhost -1lnsl -lmalloc ~lgen -1m
TOOLS
Included in the Atari System V set of software tools for applications
development are the following GNU tools from the Free Software Foundation:
gee C compiler
g++ C++ compiler
gdb C debugger
bison compiler-generator
RCS Revision Control System

PROGRAMMING NOTES

When programming, note the following:

¢ The object file format used in Atari System V is the Executable and Linking
format (ELF), not the Common Object File Format (COFF) used in earlier
releases of System V,

® When compiling X code, use imake o generate makefiles, The imake
program automatically inserts the compiler flag -DSYSV to accommodate
X11 header files in a System V environment.

® The debugger support format is called DWAREF; it is supported by gdb.

¢ The gee default compiler may issue calls to gnulib. Therefore, when porting
an application to a platform that does not have it, include gaulib in the
application package.

4.2

Application Development

INTERNATIONALIZED APPLICATION DEVELOPMENT

Internationalization involves generalizing programs or systems so they can
handle a variety of languages, character sets, and national customs.

All text visible to the user must be internationalized. That is, it must be displayed
in the language of the environment variable LANG. This includes titles, label
strings, icon names, product names, and format strings used to compose other
strings. Even a format string as simple as %s:%s must be internationalized, since
punctuation differs from language to language.

File names and log file output should not be internationalized. If you are
developing an OSF/Motif-based application, routines in the Atari library
simplify the internationalization process.

Within the source code, do the following:

1. Initialize the program envir t to be the language of the user’s
locale.

See the enviren(5) manual page for a description of the environment
variables that define a locale.

The setlocale routine initializes the program environment for a particular
language for one or more of the following variables:

— LC_TYPE affects the behavior of character handling and
multibyte character functions

— LC_COLLATE affects string collation and transformation
— LC_MESSAGES affects message catalog functions
- LC_MONETARY affects monetary formats
— LC_NUMERIC affects numeric formatting functions
— LC_TIME affects date and time string conversions
In addition, LC_ALL affects all of the above.
Example:
setlocale (LC_ALL,"")

A value of ™’ for locale specifies that the locale should be taken from
environment variables. Refer to the setlocale(3C) manual page for details.

2. Use the following Atari System V macros and routines that
tically handle internati requir

See Appendix E to read how these routines correspond to the standard
specified in the X/Open Portability Guide, Issue 3.

Character routines that handle characters and strings according to the locale
setting are

ctype(3C) character handling

conv(3C) character translation

mbchar(3C) multibyte character handling

mbstring(3C) multibyte string functions

streoll(3C) string collation

string(3C) string operations

strxfrm(3C) string transformation

43

Chapter 4

The following local convention routines handle language-dependent
representation of numbers, dates, and times. These functions are affected by
the current locale setting.

nl_langinfo(3C) retrieve local convention information from
environment table
localeconv(3C) get numeric formatting information

ctime(3C) convert date and time to string
perror(3C) print system error messages
printf(3C) print formatted output

regexp(5) regular expression matching routines
strftime(3C) convert date and time to string
strtod(3C) convert string to number

scanf(3C) convert formatted input

vprintf(3C) print formatted output
3. Create and install a message catalog specific to the application.
gencat(l) produce a message catalog from a text file
The output of the gencat command is placed in the directory
Just/lib/locale/SLANG/LC_ MESSAGES

replacing $LANG with the appropriate language. For example, if the
language is French from France, then LANG=french_france and the catalog
would be placed in

fusr/lib/locale/french_france/LC_MESSAGES

In addition, the gencat file upon which all other translations are based should
be placed in

fust/lib/local/C/LC_MESSAGES

Translators may then ungencat the message file, translate it, gencat the
translation, and move the file to the appropriate place for that language.

4. Use the ge catalog indi d by the locale setting.

catopen(3C) open message catalog specified by NLSPATH
catgets(3C) retrieve messages from message catalog
catclose(3C) close the message catalog

If possible, use the Atari Library routine FmCatGetS rather than these standard
C library message catalog routines.

ADDING A LANGUAGE TO THE SYSTEM ENVIRONMENT

Table 4-2 shows locales supported by Atari System V environment files.

Use the following steps to add another locale:

1. Decide on a language name.

lang territory.codeset

Since it is almost always ISO 8859-1, you can drop .codeset. Territory may
also be optional. For instance, if the new language were Romansch, it need
not be romansch_swiss.8859-1, but simply romansch.

2. Create and install both a character translation table and a numeric
representation table.

Table 4-2
Environment
File Locales

Application Development

Locale

Description

english_usa*
french_canada
danish

dutch

english_uk

finnish
french_france*
french_switzerland
german_germany*
italian_italy*
italian_switzerland
norwegian
portuguese

spanish

swedish

icelandic

Lo}

American English

Canadian French

Danish

Dutch

English

Finnish

French

Swiss French

German

Italian

Swiss Italian

Norwegian

Portuguese

Spanish

Swedish

Icelandic

Locale used when LANG not specified.
Also used for translating to other locales,
generally english.

*Default locale for this language

a. Construct an input file using the file supplied in
fusr/lib/locale/C/chrtbl_C as the starting point. (See manual page

chrtbl(1M).)

b. Generate tables using the chrtbl command.

¢. Install the two output tables in their respective directories, /usr/lib/locale/
SLANG/LC_NUMERIC and /usr/lib/locale/SLANG/LC_TYPE.

3. Create and install a character collation table.

a. Construct an input file that describes the collating sequence for the new
language. You may use /ust/lib/locale/C/collthl_C as a starting point, but
it may be more useful to use /usr/lib/locale/english_usa/collthl_C. (See
manual page colltbl(1M) for format and content of this file.)

b. Use the colltbl command to generate a collation table.
c. Install the collation table in /usr/lib/locale/SLANG/LC_COLLATE.

4. Create and install a table of

Yy repr

a. Construct an input file to describe formatting conventions for monetary
quantities for the new language (see the montbl(1M) manual page for
specifications). You can use the file /usr/lib/locale/C/montbl_C as a
starting point, but it may be more useful to use
fustAlib/locale/english_usa/collthl_C.

b. Create a monetary database table using the montbl command.

c¢. Install the monetary database table in the directory
Jusr/lib/locale/SLANG/LC_MONETARY.

Chapter 4

4-6

5. Create and install a file of time representation.

a. See the format specified in the strftime(4) manual page. Use the file
Jusr/lib/locale/C/time_C as a starting point.

b. Install in directory /usr/lib/locale/SLANG/LC_TIME
6. Create and install message catalogs for applications that will be used in
the new language.

a. Use the cp command to copy the original language version of the
message file from /usr/lib/local/C/LC_MESSAGES; using a text editor,
change the text portions to the new language.

b. Generate a formatted message catalog from the text source file.

¢. Install the formatted message catalog in the directory
JusrAlib/locale/SLANG/LC_MESSAGES

APPLICATION IMPLEMENTATION GUIDELINES

This section outlines recommendations for implementing XFM applications. It
deals specifically with the interaction between the application and the
Jusr/lib/X11/Atari library. All applications must conform to the Atari Style, as
described in the Atari Style Guide.

Atari Library

The Atari library routines make it easier to conform to Atari Style. These
routines are listed at the end of this section. On-line manual pages are listed in
Appendix A.

Atari library routines facilitate the use of XFaceMaker 2 functions that
* integrate internationalization into an XFaceMaker application,

e implement both context-sensitive and general help, and

e implement pop-up alert boxes.

The Atari library provides functions that implement input callback for most
application needs. For example, X library routines call back with an arbitrary
amount of input data; use an Atari library function that will pack this data up in
the amounts you want before calling your application back.

Window Construction

If there is only one primary window, it must be an XmApplicationShell. You
must use XmTopLevelShell for the second and any subsequent primary
windows. All primary windows must be fully decorated, must have
XmMainWindow as their immediate child, and must have a menu bar.

You must use XmTransientShell for secondary windows, which may not have
menu bars. They must have a row of buttons at the bottom and a separator above
them. Secondary windows that are modal should always appear near the widget
that caused them to appear. This is done automatically for Help and Alert boxes.
Others may use PositionNear(). Modeless secondary windows may appear
wherever the application designer thinks appropriate, but should defer to the
window manager, if possible.

Secondary windows, even modal ones, must have a title bar so that they can be
moved by the user, and they must not restrict the cursor to the window interior,
which would prevent the user from consulting other applications.

The dollar sign ($) is a comment sign
JSor messages

Application Development

All windows should be unmapped in their .fim file. After all .fin files are loaded,
all active values attached, and all library initialization routines called, the
application should use FmShowWidget to make the first primary window
appear. The pointer to the shell widget may be obtained through an active value.

Internationalization

Within the source code, use the routine FmCatGetS (o obtain an
internationalized message. Mnemonics for the set number and message number
should be declared with #define directives, instead of using plain integers. The
message file (suffix ./msg) should contain the mnemonic before the set or
message declaration to aid in decoding.

For example, if you define

#define ERRORMSGS_SET 123
#define CANNOT_OPEN 32

the .msg file should contain something like

$ ERRORMSGS_SET
set 123

3 CANNOT_OPEN

32 Cannot open that file.

@ FmCatGetS uses catgets(3I) toobtain messages. These messages areread into
a static space, so the string returned by FmCatGetS should be copied if it is to
be used after the next call to FmCatGetS (or catgets).

Alert Popup Dialogs

Alert dialogs are used for all application errors. The only exception is when the
AlertInit() function fails. In this case, the application writes a message to the log
file and exits with a nonzero status. The alert displayed to the user will be of a
nontechnical nature, with all technical and system call error information directed
to the log file.

Fatal alert messages should be presented with the InternalError() function,
which exits after displaying the message.

Nonfatal alert messages must be presented whenever a system call or library
routine fails in a way that adversely affects the application, especially if the user
provided the information, such as a file name, for the routine that failed. Some
typical routines that may incur such errors are fopen() and unlink().

Help Popup Dialogs

All applications must provide Help On Context and Help On Version. If an
application uses a mnemonic not found in the OSF/Motif Style Guide, it must
also provide Help On Keys. If it binds any custom mouse actions, it must also
provide Help On Mouse. Help On Keys and Help On Mouse may be provided
even though not required by the above conditions. Help On Help, Help On
Window, Index help, and Tutorial help may be available, but are not required.

Running Subprocesses

The system() library routine should not be used to run processes, since it waits
for the child to exit before returning and causes problems for the X11 Window

47

Chapter 4

System’s asynchronous event processing. Another drawback of the system()
library routine is that it uses a shell process to execute the command, which
should not be necessary. For this reason, the popen() routine should also be
avoided. The RunProcess() function provides a way to run subprocesses with
input/output redirection, including pipes.

Note that the asynchronous nature of X11 also requires that the application not
block the waiting period for a subprocess to terminate. Thus, the SIGCLD signal
must be caught by the application, and the wait for the terminated process must
be done in the signal handler. To minimize the intrusion to X processing, the
signal handler should limit its activity to obtaining the termination status of the
process by means of the wait(2) system call and then registering a work process
to do the actual signal handling. See the documentation on the X Toolkit routine,
XAppAddWorkProc, for details on adding a work process.

Input/Output Handling

Any read or write operations that can potentially block may also interfere with
the operation of the X11 Window System. When an application is programmed
with all code in-line, effectively blocking whatever is waiting for file input or
keyboard input—the window cannot be resized, iconified, moved, or otherwise
manipulated during this wait time. In contrast, the window of an application
programmed with input callbacks can be resized, iconified, moved, etc.,
regardless of where the data is.

For this reason, the X Toolkit routine XtAppAddInput allows input/output

routines to be called only when the request may be done without blocking.

Although the routine is called XtAppAddInput, it may in fact be used for

detecting read, write, and exception conditions. Pipes, pseudo-TTYs, and

network files are all especially susceptible to being blocked, on both reading and

writing. Even ordinary files may be network files because of NFS and other

transparent file systems, so it’s a good idea to always use XtAppAddInput to

handle input/output processing.

This input-caliback programming technique is described in

e Nye, A, and O'Reilly, T.,.X Toolkit Intrinsics Programming Manual, Volume
Four, Section 8, “Input Techniques” Subsection 8.3, “File,Pipe, and Socket
Input”

e Nye, A and O'Reilly, T., X Toolkit Intrinsics Reference Manual, Volume
Five, “Xt Functions and Macros Subsection Event Handling, XtAddInput”

e Young, D. A, The X Window System—Programming and Applications with
Xt; OSF/Motif Edition, Section 5.8.1, “Using Input Callbacks”

Log Files

Applications should log their progress using the logging routines provided in the
Adtari library. Every major state change, such as opening or closing a window,
should be written to the log. More detailed information should use the
LogDebug macro so it will not be compiled into the code for production.

Any abnormal condition, especially one resulting in a fatal alert message, should
be noted in the log file.

The application must call LogClose upon normal termination in order to remove
the log file.

Application Development

Atari Library Routines
Help Subsystem:

HelpInit Initialize help subsystem
PopupHelpAndWait Present help box and wait for response
HelpOnContext Provides help on context for application
Alert Subsystem:

AlertInit Initialize alert box subsystem
InternalError Present an internal error alert box, then exit
AlertSetButtons Set buttons in an alert box

AlertHelp Present help box for an alert box

PopupAlertAndWait Present alert box and wait for a response

Convenience routines present a standard dialog box and wait for a response:

PopupErrorAndWait

PopupInformationAnd Wait

PopupMessageAnd Wait

PopupQuestionAnd Wait

PopupWarningAnd Wait

PopupWorkingAnd Wait

I ive C d E ion Subsystem:

ExecuteList Execute a command and a list of arguments
ExecuteListV Execute a command and a vector of arguments
ExecuteString Use the shell to execute a command in a string
Noninteractive C 3£ ion Subsy

RunProcess Run a process with I/O redirection
RunProcessV Run a process with command arguments as a vector

AddChildHandler ~ Add a child handler to a running process
GetCommandStatus Run a process and call a function with exit status
GetCommandStatusV Same, with command arguments as a vector

High-level Asynchronous Input/Output Routines:

ReadFileData Read raw data from a file

ReadFileLines Read lines from a file

ReadFileStrings Read lines from a file and store in array of strings
ReadPipeData Read raw data from a pipe

ReadPipeDataV Like ReadPipeData, with command argument vector
ReadPipeLines Read lines from a pipe

ReadPipeLinesV Like ReadPipeLines, with command argument vector
ReadPipeStrings Read lines from pipe and store in an array of strings
ReadPipeStringsV Like ReadPipeStrings, with command argument vector

Low-level Asynchronous Input/Output Routines:

AddIoProc Register an asynchronous I/0O procedure.
RemoveloProc Remove an asynchronous [/O procedure
OpenReadPipe Open a pipe for reading

OpenReadPipeV Open aread pipe, with command arguments as a vector

Chapter 4

4-10

OpenWritePipe Open a pipe for writing
OpenWritePipeV Open a write pipe, with command arguments as vector

OpenFilter Run a filter process with pipes both in and out
OpenFilterV Run a filter, with command arguments as a vector
GetPipePid Get process ID of a pipe from its file descriptor
ClosePipe Close pipe file descriptor

Application Logging Routines:

LogOpen Open a log file

LogWrite Write to a log file

LogDebug Put debug message in log file

LogAssert Check an assertion and report failure in log file
LogSystemError Report a system error to the log file

LogClose Close and remove a log file

LogReopen Change a log file

Miscellaneous routines:

AddPath Add an element to a path-like environment variable
AddPathV Add a vector of elements to a path variable

AdjustWmPadding Adjust padding values depending on resource values
FindWmPadding Find out size of window manager decorations
FmCatGetSAlloc Call FmCatGetS and copy result in a dynamic buffer
FmCatGetSRealloc Call FmCatGetS and re-use given buffer
GetSimpleCharSet Get default character set for OSF/Motif strings
PositionBeneath Position a widget beneath another widget

PositionCenter Position a widget centered over another widget
PositionNear Position a widget near another widget
PositionOver Position a widget over another widget

PositionRootCenter Position a widget in the center of the root window

APPLICATION PACKAGING

You should bundle your application into an installable product so that it can be
installed automatically using the system administration tool Product Installation,
or the command pkgadd. There are no choices with regard to the directory in
which the product will be installed, or to the parts of the package to install,
unless incorporated into the installation portions of the package.

This section is an overview of how an application should be bundled into an
installable product. For more detailed information, refer to the instructions,
sample files, and scripts in the AT&T, Unix System V Release 4 Programmer’s
Guide: System Services and Application Packaging Tools, Chapter 8 “Packaging
Application Software,” Appendix B “Manual Pages,” and Appendix C “Package
Installation Case Studies.”

1. Create a file called pkginfo.

This ASCII file describes the application package name, release, and version
numbers.

2. Create a file called profotype.

This ASCII file has one entry per file that is a part of the application
package, including the pkginfo and request files.

Application Development

3. Create an (optional) installation script.

This file may be a Bourne shell (sh) script, or may be an executable program.
It can be a request, a class action, or a procedure script. Customize this script
for the application package. Typical things an installation script can do are

— Set up for selective installation (ask which parts of the package
should be installed and where they should be placed).

— Install a device driver (ask how many device nodes to create,
run a postinstall script, and reboot the system upon
installation).

— Define extra disk space requirements required for this package
(create a file called space).

— Display a copyright message (create a file called copyright)

— Define any software dependencies associated with this package
(create a file called depend).

— Modify a system file during installation.

At the end of the request script, relevant parameters are made available to the
installation environment for pkgadd.

4. Runthe pkgmk command, which will gather all components of a
package, copy then onto the installation medium, and place them into a
structure that pkgadd will recognize.

DEVICE DRIVERS

Atari System V treats devices as special files that data is either read from or
written to. These files are called device drivers. Files that provide interfaces to
other system resources are called modules or “software drivers” (i.e., there is no
physically removeable hardware device per se). Some examples of these device
drivers and software modules are

s The block device driver that controls the hardware disk unit.

e The streams driver or module that controls the hardware terminal or the
software terminal line-discipline module.

e The line discipline module.

Certain drivers are required (o run the system—the keyboard driver, for example.
Those shown in Table 4-3 and a few additional drivers are present in Atari
System V.

Additonal drivers can be added to your system; write them as needed, or find
someone who already has one that suits your needs.

A device driver must concern itself with three specific interfaces:
e the hardware device,
e the kernel, and
e the boot

The interface with the kernel is by means of data structures. See the AT&T
Device Driver Interface/Driver-Kernel Interface(DDI/DKI) Reference Manual

4-11

Chapter 4

Table 4-3
Atari System V
Device Drivers

Driver Function

IKDB Intelligent keyboard

SCsI Generic SCSI manager

HD SCSI hard disk driver(interfaces with SCSI driver)
TP SCSI tape (interfaces with SCSI driver) archive viper tape streamer
FFD 7T20KB floppy disk

CEN Centronics parallel port

Scclo) Two serial ports on Zilog 6530 SCC chip

USART Two serial ports on MFP chips

LA VME Ethernet board driver

VIDEO Video subsystem

PSG Programmable sound generator

CLOCK Real-time clock

MFP Multifunction peripheral/interrupt controller

for the System V.4 protocol approved by AT&T. There may be some name
changes for writing device drivers in a Motorola 68000 environment, but the
functionality should be the same.

If
to

you are writing a device driver for a SCSI device, refer to the on-line “Guide
Writing Device Drivers for the Generic SCSI” located in the file

fusrflocal/src/samples/scsidriver/scsigen.doc.

The source for a sample SCSI printer driver is available on-line in the file
Just/local/src/samples/scsidriver/prc. Compile it as follows:

gec -Xt -D_KERNEL -O -c pr.c

Adding a Device Driver

1.

6

Create an object file (in ELF format) with gcc, which will be added to
the kernel. If a device uses several a.out files, link them together.

. Create a master(4) file in /etc/master.d directory.
. If it is a software-only driver, add an entry to the /stand/system file.
. If the driver is for a hardware device, add entry to/stand/edt_data file.

@ You cannot use edittbl(1M), because the format of edt_data
has been changed in the Atari System V release.

. Install the driver with drvinstall(1IM). This creates a boot module from

the master file and the driver object file and places it in /boot.

If the driver is for a hardware device, install a boot probe program in
/stand. When the system boots, it looks for these.

In /usr/src/uts/boot/probe there is a probe program called naiveprobe.c that
checks for a bus error when performing a byte read at the device base
address. For straightforward cases this may be compiled unmodified for each
device, with the define DEVNAME variable set to the appropriate device
name by means of a-DDEVNAME flag in the makefile probe.mk. For
more complex cases, dedicated probe programs may be written for each
device. The xed! library contains the necessary structures.

Application Development

7. If the driver is a hardware device, make special files with mknod(1M).
8. Reconfigure the kernel. Refer to Chapter 3, “System Reconfiguration.”

9. Reboot and use the device.

PORTING TOS/GEM APPLICATIONS

There is no simple rule for converting GEM programs to OSF/Motif. Both are
graphical user interfaces with a windowing system and have several features in
common,

Porting By Means of XFaceMaker 2

Atari System V uses the OSF/Motif widget set and the XFaceMaker 2 interface
builder, which allow the programmer to concentrate on the functionality of the
application, XFaceMaker also hides the complexity of the X Window System.

However, the XFaceMaker 2 library is more advanced, including such features
as a built-in C-like language, callbacks, active values, and the availabiltity of
powerful widgets.

As a GEM programmer, you are familiar with writing graphical user interface
software. The software you want to port usually consists of two parts: the
application and the user interface.

Application

If the application was written in C, it is easy to transfer it to Atari System V and
recompile it. Calls to the TOS operating system must be converted to the
equivalant Atari System V operating system calls. The most compatible way is
to use the C standard library functions—fopen, fwrite, etc. (Refer to the section
“Input/Output Handling” in this chapter.

User Interface

The user interface must be redesigned. OSF/Motif has a different look and feel
than GEM and has new graphical objects you may want to use. Also, the
application now has to run in a multi-tasking environment.

To start, redesign the user interface using XFaceMaker 2. Create a main window
that contains the menu bar. The contents of the window should be the contents of
your main window (form) in the GEM application.

Forms and Windows

Under the X Window system, windows are used, rather than forms; these
windows may overlap. The windows controlled by the window manager have a
title bar and are similar to GEM windows.

Thus, a form dialog box in GEM must be implemented as a window under Atari
System V. XFaceMaker 2 helps the developer create windows that behave in the
same way as dialog forms.

XFaceMaker 2 allows you to create a window and place interactive widgets and
text edit fields inside it. You can specify callback functions that are the names of
functions in the program you are writing. These functions will be called by the
XFaceMaker 2 library when this object is selected.

4-13

Chapter 4

414

After creating the window, save it and write the program. Usually the
XFaceMaker 2 library opens the window automatically and handles all events. If
an object such as a button is selected, the XFaceMaker 2 library calls the
callback fucntion specified for the object and acts on the user’s input. When
using the XFaceMaker 2 library, the application developer has less to do than
when using GEM.

To open a window without using XFaceMaker 2, use the Xt Toolkit. To draw
circles, rectangles, etc., inside a window use the Xlib. It’s similar to drawing
with the VDI inside a GEM window. If you use Xlib drawings, redrawing the
window is more complicated. It’s possible to draw with X1ib functions inside a
window created by XFaceMaker 2. See Appendix D for a table of GEM/XIlib
equivalents.

Main Loop

The main loop in a GEM program is usually the event_multi() loop which waits
for events to occur. The application then determines the type of event that
occurred and calls the appropriate function.

With XFaceMaker 2, this is not necessary. Once the main event loop (FmLoop)
has been called, your functions that react on events are called automatically.

During the design of the user interface of the application using XFaceMaker 2
you specify callback functions for interactive objects. The XFaceMaker 2 libary
will call your function when an action takes place on that object.

For instance, you might create a window with one button. When the button is
pressed, the window closes and the application exits. Design the window with
XFaceMaker 2 and place the button inside it. Specify the name of the callback
function for the button via the XFaceMaker 2 resource window using the activate
callback resource. For example, use button_pressed().

After saving the user interface you write your program. The core program in
general has to contain only two functions:

e The main() function, calling FmInitialize(), FmAttachFunction() to
connect the C-function with the user interface and the FmLeop().

e Your callback function for the button in this example, button_pressed().
This function calls exit(0), which causes the window to close and the
application to exit.

The FmLoop() is like calling the event_multi() function in GEM and parsing
the occured events, except that the parsing is done automatically by X and the
XFaceMaker 2 library. Because the library knows the names and addresses of
your functions, it is able to call them.

Porting Example

There is a small GEM address application available which was ported to
OSF/Motif. There you are able to see how the GEM look and feel was converted
to Motif/X Windows following the Atari Style Guide. This GEM application is
on-line in /usr/local/src/samples/gem2motif. The GEM example is in subdirgem
and the Motif example in subdirmotif

Application Development

REFERENCES
Atari Computer Corp., Atari Style Guide, Atari, 1991
AT&T, UNIX System V Release 4 Documentation, Prentice Hall, 1990:

Device Driver Interface/Driver Kernel Interface(DDI/DKI) Reference
Manual

Programmer’s Guide: STREAMS

Programmer’s Guide: Networking Interfaces

Programmer’s Guide: BSD/XENIX Compatibility Guide
Programmer’s Reference Manual

System Administrator’s Guide

System Administrator’s Reference Manual

environ(5)
langinfo(5)
nl_types(5)
chrtbl(1M)
colltbl(1M)
montbl(1M)

System Services and Application Packaging Tools,

Chapter 8, "Packaging Application Software”

Appendix B,

Appendix C,
Non Standard Logics, XFaceMaker 2 Programmer’s Guide, Paris, France, 1991
Non Standard Logics, XFaceMaker 2 User’s Guide, Paris, France, 1991
Nye, A. and O’Reilly, T., O'Reilly & Associates, 1990:

Volume One: Xlib Programming Manual

Volume Two: XIlib Reference Manual

Volume Four: X Toolkit Intrinsics Programming Manual
Volume Five: X Toolkit Intrinsics Reference Manual

Open Software Foundation, OSF/Motif Programmer’s Guide, Prentice-Hall,
1990

Open Software Foundation, OSE/Motif Style Guide, Revision 1.1, Prentice-Hall
Inc., 1991

Open Software Foundation, OSF/Motif Programmer’s Reference, Prentice-Hall,
1991

Young, Douglas, The X Window System—Programming and Applications with
Xt—OSF/Motif Edition, Prentice-Hall Inc., 1990

X/Open Company, Ltd., X/Open Portability Guide, XSI Supplementary
Definitions, Prentice Hall, Inc., 1989

4-15

Chapter 4

4-16

